

CAMP: Computational Anatomy and Medical Imaging using PyTorch

CAMP is designed as a general-purpose tool for medical image and data processing.
PyTorch [https://pytorch.org/] provides an efficient backend for mathematical routines (linear algebra, automatic differentiation, etc.) with support for GPU acceleration and distributed computing.
PyTorch also allows CAMP to be portable due to full CPU-only support.

CAMP adopts coordinate system conventions designed to be compatible with medical imaging systems, including meta-data for a consistent world coordinate frame.
Image transformations and image processing can be performed relative to the coordinate system in which the images reside, which facilitates multi-scale algorithms.
Core representations for data include structured and unstructured grids.

Structured Grids

Structured grids represent data with consistent rectilinear element spacing.
These grids are commonly defined by the origin and element spacing attributes.
Images and vector fields are most commonly represented by a structured grid.
CAMP defines many operators to perform computation on structured grid data, including Gaussian blur and composition of deformation fields.
Multi-channel (including color) images are supported – the internal convention is channels-first representation (C x D x H x W).

Unstructured Grids

Unstructured grids represent data with arbitrary element shape and location.
Currently, only triangular mesh objects are supported, which aim to represent surface data via edge and vertex representation.
Data values may be face-centered or node-centered.
The unstructured grid objects maintain a world coordinate system that preserves relationships between other unstructured and structured grid data.
An example implementation of deformable surface-based registration is implemented using the unstructured grid representation, based on Glaunes et al. (2004) [https://ieeexplore.ieee.org/document/1315234?section=abstract].
Watch a summary video using this implementation on YouTube [https://www.youtube.com/watch?v=RNaI1_TNamY&feature=youtu.be&ab_channel=BlakeZimmerman].

Data I/O

Many medical imaging formats are supported through SimpleITK [https://pypi.org/project/SimpleITK/].

Relevant Publications

There is not a single publication that describes the architecture or design of the CAMP project. However, the following
publications are use cases that inspired the core development of CAMP.

	Zimmerman, B. E., Johnson, S. L., Odéen, H. A., Shea, J. E., Factor, R. E., Joshi, S. C., & Payne, A. H. (2021). Histology to 3D In Vivo MR Registration for Volumetric Evaluation of MRgFUS Treatment Assessment Biomarkers [https://arxiv.org/abs/2011.10708)]. Manuscript submitted for publication.

	Zimmerman, B. E., Johnson, S., Odéen, H., Shea, J., Foote, M. D., Winkler, N., Sarang Joshi, & Payne, A. (2020). Learning Multiparametric Biomarkers for Assessing MR-Guided Focused Ultrasound Treatments [https://ieeexplore.ieee.org/abstract/document/9200773]. IEEE Transactions on Biomedical Engineering.

Table of Contents

	Core
	Structured Grid

	Triangle Mesh

	Display

	File Input/Output (IO)
	ITK IO

	Object IO

	Structured Grid Operators
	Binary Operators

	Unary Operators

	Structured Grid Tools
	Gradient Flow Filter

	Unstructured Grid Operators
	Binary Operators

	Unary Operators

Indices and tables

	Index

	Module Index

	Search Page

Core

This section details the currently implemented base classes available in CAMP, including the Structured Grid and
Triangle Mesh objects. The structured grids represent images, fields, look-up tables, or anything that is structured on
a grid. The triangle mesh object inherits from an underlying unstructured grid object meant to represent different
surfaces. Currently, the only mesh type supported is a triangle mesh, but the unstructured grid object could easily
be expanded to include other mesh types, such as quads. This package also provides functions for displaying both
structured grid data and triangle mesh objects.

Structured Grid

	
class StructuredGrid(size, spacing=None, origin=None, device='cpu', dtype=torch.float32, requires_grad=False, tensor=None, channels=1)

	This is the base class for grid structured data such as images, look-up tables (luts), vector fields, etc. This
class wraps a torch tensor (data attribute) to provide world coordinate system context.

	Parameters

	
	size (list, tuple, tensor) – Size of the grid. Size is ordered [z],y,x ([] is optional).

	spacing (list, tuple, tensor, optional) – Spacing between the grid elements. Default is isotropic 1.0 spacing.

	origin (list, tuple, tensor, optional) – Real world location of the pixel (2D) or voxel (3D) with the minimum location value. The locations
of the grid elements increase by the spacing in each relative direction from this voxel. Default pleaces the
center of the grid at the origin.

	device (str, optional) – Memory location - one of ‘cpu’, ‘cuda’, or ‘cuda:X’ where X specifies the device identifier.
Default: ‘cpu’

	dtype (str, optional) – Data type, specified from torch memory types. Default: ‘torch.float32’

	requires_grad (bool, optional) – Track tensor for gradient operations. Default: False

	tensor (torch.tensor, optional) – The underlying tensor for the data attribute. This allows StructuredGird to be wrapped
around alread-exisiting tensors. This tensor must be of size C,[z],y,x where [z],y,x are the same as ‘size’ and
C is equal to Channels. If not provided, the data attribute will be initialized to size C,[z],y,x with zeros.

	channels (int) – Number of channels for the grid. For example, black and white images must have 1 channel
and RGB images have 3 channels. Channels can be any integer number.

	
static FromGrid(grid, tensor=None, channels=1)

	Construct a new StructuredGrid from a reference StructuredGrid (for the size, spacing,
origin, device, dtype, requires_grad) and a torch tensor.

	Parameters

	
	grid (StructuredGrid) – Reference StructuredGrid with the reference attributes.

	tensor (tensor) – Torch tensor to wrap into the new StructuredGrid. Must have size [z],y,x from the
reference StructuredGrid and the number of specific channels.

	channels (int) – Channels of the input tensor.

	Returns

	New StructuredGrid wrapped around the input tensor.

	
clone()

	Create a copy of the StructuredGrid.

	Returns

	Copy of StructuredGrid.

	
copy()

	Create a copy of the StructuredGrid.

	Returns

	Copy of StructuredGrid.

	
extract_slice(index, dim)

	Extract a slice from a 3D volume. Updates the origin to maintain the world coordinate system location.

	Parameters

	
	index (int) – Slice index to extract.

	dim (int) – Dimension along which to extract the slice.

	Returns

	Extracted slice.

	
get_subvol(zrng=None, yrng=None, xrng=None)

	Extract a sub volume. The coordiantes for the sub volume are in index coordiantes.
Updates the origin to maintain the world coordinate system location.

	Parameters

	
	zrng (list, tuple, optional) – Tuple or list of 2 values between [0, size[0]]. If no range is provided, the size stays the same.

	yrng (list, tuple, optional) – Tuple or list of 2 values between [0, size[1]]. If no range is provided, the size stays the same.

	xrng (list, tuple, optional) – Tuple or list of 2 values between [0, size[2]]. If no range is provided, the size stays the same.

	Returns

	Sub volume with updated origin.

	
max()

	Max of the data attribute.

	Returns

	data.max()

	
min()

	Min of the data attribute.

	Returns

	data.min()

	
minmax()

	Min and Max of the data attribute.

	Returns

	[data.min(), data.max()]

	
set_origin_(origin)

	Set the origin. Does not change the spacing.

	Parameters

	origin (list, tuple, tensor) – New origin.

	Returns

	None

	
set_size(size, inplace=True)

	Set the size of the StructuredGrid. This will update the spacing and origin of the
StructuredGrid to maintain the original real world FOV.

	Parameters

	
	size (torch.tensor) – New size for the StructuredGrid [z],y,x

	inplace (bool) – Perform the resize operation in place. Default=True.

	Returns

	If inplace==True then returns a new StructuredGrid.

	
set_spacing_(spacing)

	Set the spacing. Does not change the origin.

	Parameters

	spacing (list, tuple, tensor,) – New spacing.

	Returns

	None

	
set_to_identity_lut_()

	Set the tensor to an real world identity look-up table (LUT) using the spacing and origin of the
StructuredGrid. The number of channels will be set to the number of dimensions in size.

	Returns

	StructuredGrid as a real world identity LUT.

	
shape()

	Returns the shape of the data attribute, including the channels.

	Returns

	data.shape

	
sum()

	Sum of the data attribute.

	Returns

	data.sum()

	
to_(device)

	Change the memory device of the StructuredGrid.

	Parameters

	device (str, optional) – New memory location - one of ‘cpu’, ‘cuda’, or ‘cuda:X’ where X specifies the device identifier.

	Returns

	None

	
to_type_(new_type)

	Change the data type of the StructuredGrid attributes.

	Parameters

	dtype (str, optional) – Data type, specified from torch memory types. Default: ‘torch.float32’

	Returns

	None

Triangle Mesh

	
class TriangleMesh(vertices, indices, per_vert_values=None, per_index_values=None)

	Triangle mesh class that inherits from the unstructured grid class.

	Parameters

	
	vertices (tensor) – Vertices of the mesh object (x,y,z)

	indices (long tensor) – Indices of the mesh object

	per_vert_values (tensor, optional) – Values associated with each vertex of the triangle mesh.

	per_index_values (str, optional) – Values associated with the indices (or faces) of the triangle mesh.

	
add_surface_(verts, indices)

	Concatenate two triangle mesh objects. This does not connect the two objects with faces, it just concatenates
the vertices and indices of the two surfaces into one.

	Returns

	None

	
calc_centers(**kwargs)

	Caluclate the face centers of the triangle mesh using the vertices and indices to populate the centers
attribute.

	Returns

	None

	
calc_normals()

	Caluclate the face normals of the triangle mesh using the vertices and indices to populate the normals
attribute.

	Returns

	None

	
flip_normals_()

	Flip the face normals.

	Returns

	None

Display

	
DispFieldGrid(Field, grid_size=None, title=None, newFig=True, dim='z', slice_index=None)

	Displays a grid of the input field. Field is assumed to be a look-up table (LUT) of type StructuredGrid.

	Parameters

	
	Field (StructuredGrid) – Assumed to be a StructuredGrid LUT that defines a transformation.

	grid_size (int) – Number of grid lines to plot in each direction.

	title (str) – Figure Title.

	newFig (bool) – Create a new figure. Default True.

	dim (str) – Dimension along which to plot 3D image. Default is 0 (‘z’).

	slice_index (int) – Slice index along ‘dim’ to plot

	Returns

	None

	
DispImage(Image, rng=None, cmap='gray', title=None, new_figure=True, color=False, colorbar=True, axis='default', dim=0, slice_index=None)

	Display an image default with a colorbar. If the input image is 3D, it will be sliced along the dim argument. If no
slice index is provided then it will be the center slice along dim.

	Parameters

	
	Image (StructuredGrid) – Input Image ([RGB[A]], [Z], Y, X)

	rng (list, tuple) – Display intensity range. Defaults to data intensity range.

	cmap (str) – Matplotlib colormap. Default ‘gray’.

	title (str) – Figure Title.

	new_figure (bool) – Create a new figure. Default True.

	colorbar (bool) – Display colorbar. Default True.

	axis (str) – Axis direction. ‘default’ has (0,0) in the upper left hand corner and the x direction is vertical
‘cart’ has (0,0) in the lower left hand corner and the x direction is horizontal

	dim (int) – Dimension along which to plot 3D image. Default is 0 (z).

	slice_index (int) – Slice index along ‘dim’ to plot

	Returns

	None

	
exception DisplayException

	exception for this class

	
DisplayJacobianDeterminant(Field, rng=None, cmap='jet', title=None, new_figure=True, colorbar=True, slice_index=None, dim='z')

	Calculated and display the jacobian determinant of a field.

	Parameters

	
	Field (StructuredGrid) – Assumed to be a StructuredGrid LUT that defines a transformation.

	rng (list, tuple) – Display intensity range. Defaults to jacobian determinant intensity range.

	cmap (str) – Matplotlib colormap. Default ‘jet’.

	title (str) – Figure Title.

	new_figure (bool) – Create a new figure. Default True.

	colorbar (bool) – Display colorbar. Default True.

	dim (int) – Dimension along which to plot 3D image. Default is 0 (z).

	slice_index (int) – Slice index along ‘dim’ to plot

	Returns

	None

	
EnergyPlot(energy, title='Energy', new_figure=True, legend=None)

	Plot energies from registration functions.

	Parameters

	
	energy (list, tuple) – The energies should be in the form [E1list, E2list, E3list, …]

	title (str) – Figure Title.

	new_figure (bool) – Create a new figure. Default True.

	legend (list) – List of strings to be added to the legend in the form [E1legend, E2legend, E3legend, …]

	Returns

	None

	
PlotSurface(verts, faces, fig=None, norms=None, cents=None, ax=None, color=(0, 0, 1))

	Plot a triangle mesh object.

	Parameters

	
	verts (tensor) – Vertices of the mesh object.

	faces (tensor) – Indices of the mesh object.

	fig (Maplotlib figure object) – Matplotlib figure object to plot the surface on. If one is not provided, and new one is created.

	norms (tensor, optional) – Normals of the mesh object.

	cents (tensor, optional) – Centers of the mesh object.

	ax (Maplotlib axis object) – Matplotlib axis object to plot the surface on. If one is not provided, and new one is created.

	color (tuple) – Plotted color of the surface. Tuple of three floats between 0 and 1 specifying RGB values.

	Returns

	None

File Input/Output (IO)

ITK IO

	
LoadITKFile(filename, device='cpu', dtype=torch.float32)

	Load an ITK compatible file using the SimpleITK package into a StructuredGrid object.

	Parameters

	
	filename (str) – File path

	device (str, optional) – Memory location - one of ‘cpu’, ‘cuda’, or ‘cuda:X’ where X specifies the device identifier.
Default: ‘cpu’

	dtype (str, optional) – Data type, specified from torch memory types. Default: ‘torch.float32’

	Returns

	StructuredGrid

	
SaveITKFile(grid, f_name)

	Save a StructuredGrid object to an ITK compatible file using the SimpleITK package.

	Parameters

	
	grid – StructuredGrid to be saved.

	f_name (str) – File path

	Returns

	None

Object IO

	
ReadOBJ(file, device='cpu')

	Read a triangle mesh OBJ file into vertex and index tensors.

	Parameters

	
	file (str) – File path

	device (str, optional) – Memory location - one of ‘cpu’, ‘cuda’, or ‘cuda:X’ where X specifies the device identifier.
Default: ‘cpu’

	Returns

	[Vertices, Faces]

	
WriteOBJ(vert, faces, file)

	Write a triangle mesh object defined by verts and faces to an OBJ file.

	Parameters

	
	vert (tensor) – Output vertices (must be on the CPU).

	faces (tensor) – Output indices (must be on the CPU).

	file (str) – OBJ file to be written.

	Returns

	None

Structured Grid Operators

	Binary Operators
	Affine Intensity Filter

	Compose Grids Filter

	L2 Image Similarity

	Normalized Cross Correlation Filter

	Unary Operators
	Affine Transform Filter

	Apply Grid Filter

	Divergence Filter

	Fluid Kernel Filter

	Gaussian Filter

	Gradient Filter

	Gradient Regularizer

	Jacobian Determinant Filter

	Radial Basis Filter

	Resample World Filter

	Variance Equalize Filter

Binary Operators

Affine Intensity Filter

	
class AffineIntensity(similarity, dim=2, init_affine=None, init_translation=None, device='cpu', dtype=torch.float32)

	
	
static Create(similarity, dim=2, init_affine=None, init_translation=None, device='cpu', dtype=torch.float32)

	Object for registering two structured grids with an affine transformation. The affine and translation are
optimized independently. This Affine Intensity filter must be on the same device as the target and moving
structured grids. The affine and translation attributes have requires_grad=True so they can be added to a
torch optimizer and updated with autograd functions.

	Parameters

	
	similarity (Filter) – This is the similiarty filter used to compare the two structured grids to be registered.
This filter is usually a Binary Operator (ie. L2 Image Similarity)

	dim (int) – Dimensionality of the structured grids to be registered (not including channels).

	init_affine (tensor, optional) – Initial affine to apply to the moving structured grid.

	init_translation (tensor, optional) – Initial translation to apply to the moving structured grid.

	device (str) – Memory location - one of ‘cpu’, ‘cuda’, or ‘cuda:X’ where X specifies the device identifier.
Default: ‘cpu’

	dtype (str) – Data type for the attributes. Specified from torch memory types. Default: ‘torch.float32’

	Returns

	Affine Intensity Filter Object

	
forward(target, moving)

	Apply the forward affine operation applied to the moving image and calculate the resulting similarity measure
between the target and moving images. The gradients on the affine and translation attributes are tracked
through this forward operation so that the gradient update can be applied to update the affine and translation.
This function is meant to be used iteratively in the registration process.

	Parameters

	
	target (StructuredGrid) – Target structured grid. Does not get updated or changed.

	moving (StructuredGrid) – Moving structured grid. Affine and translation are applied this structured grid before the
similarity calculation.

	Returns

	Energy from the similarity evaluation (usually a single float).

Compose Grids Filter

	
class ComposeGrids(padding_mode='border', device='cpu', dtype=torch.float32)

	
	
static Create(padding_mode='border', device='cpu', dtype=torch.float32)

	Object to compose StructuredGrid look-up table fields into one grid.

	Parameters

	
	pad_mode (str) – padding mode for outside grid values - one of ‘zeros’, ‘border’, or ‘reflection’.
Default: ‘zeros’

	device (str) – Memory location - one of ‘cpu’, ‘cuda’, or ‘cuda:X’ where X specifies the device identifier.
Default: ‘cpu’

	dtype (str) – Data type for the attributes. Specified from torch memory types. Default: ‘torch.float32’

	Returns

	Object to compose a list of look-up tables.

	
forward(L)

	Given a list of StructuredGrid look-up tables L = [L0, L1, L2] returns a composed look-up table
comp_field = L2(L1(L0(x))) of type StructuredGrid.

	Parameters

	L (list, tuple) – List of look-up tables. All fields in the list must be on the same memory device.

	Returns

	Composed look-up tables Comp_filed

L2 Image Similarity

	
class L2Similarity(dim=2, device='cpu', dtype=torch.float32)

	
	
static Create(dim=2, device='cpu', dtype=torch.float32)

	Compare two StructuredGrid objects using an L2 similarity metric.

	Parameters

	
	dim (int) – Dimensionality of the StructuredGrid to be compared (not including channels).

	device (str) – Memory location - one of ‘cpu’, ‘cuda’, or ‘cuda:X’ where X specifies the device identifier.
Default: ‘cpu’

	dtype (str) – Data type for the attributes. Specified from torch memory types. Default: ‘torch.float32’

	Returns

	L2 comparision object.

	
c1(target, moving, grads)

	First derivative of the L2 similarity metric.

	Parameters

	
	target (StructuredGrid) – Structured Grid 1

	moving (StructuredGrid) – Structured Grid 2

	grads (StructuredGrid) – Gradients of the moving image.

	Returns

	

	
forward(target, moving)

	Compare two StructuredGrid with L2 similarity metric. This is often used for registration so the
variables are labeled as target and moving. This function preserves the dimensionality of the original grids.

	Parameters

	
	target (StructuredGrid) – Structured Grid 1

	moving (StructuredGrid) – Structured Grid 2

	Returns

	L2 similarity as StructuredGrid

Normalized Cross Correlation Filter

	
class NormalizedCrossCorrelation(grid, window=5, device='cpu', dtype=torch.float32)

	
	
static Create(grid, window=5, device='cpu', dtype=torch.float32)

	

	
c1(target, moving, grads)

	

	
forward(target, moving)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

Unary Operators

Affine Transform Filter

	
class AffineTransform(target_landmarks=None, source_landmarks=None, affine=None, rigid=False, interp_mode='bilinear', device='cpu', dtype=torch.float32)

	Bases: camp.StructuredGridOperators.UnaryOperators._UnaryFilter.Filter

	
static Create(target_landmarks=None, source_landmarks=None, affine=None, rigid=False, interp_mode='bilinear', device='cpu', dtype=torch.float32)

	Returns an Affine Transform Filter that can be applied to type StructuredGrid. This can be
initiated using a pair of landmarks (target and source) or with a pre-defined affine transformation (affine).
Either both target and source landmarks must be provided OR a pre-defined affine.

	Parameters

	
	target_landmarks (tensor, optional) – Target or unmoving landmarks selected in the target space. This tensor should be of
size Nxdim where N is the number of landmarks and dim is the dimensionality of the
StructuredGrid the affine will be applied to.

	source_landmarks (tensor, optional) – Source or moving landmarks selected in the source space. This tensor should be of
size Nxdim where N is the number of landmarks and dim is the dimensionality of the
StructuredGrid the affine will be applied to.

	affine (tensor, optional) – Pre-defined affine. This should be of shape (dim + 1)x(dim + 1) where the added dimension
stores the translation.

	rigid (bool) – If the affine should be reduced to rigid transform only. Default is False.

	interp_mode (str) – Resampling interpolation mode to be used when applying the defromation - one of ‘bilinear’
or ‘nearest’. Default: ‘bilinear’

	device (str) – Memory location for the created filter - one of ‘cpu’, ‘cuda’, or ‘cuda:X’ where X
specifies the device identifier. Default: ‘cpu’

	dtype (str) – Data type for the filter attributes. Specified from torch memory types. Default:
‘torch.float32’

Note

When mode=’bilinear’ and the input is 5-D, the interpolation mode used internally will actually be
trilinear. However, when the input is 4-D, the interpolation mode will legitimately be bilinear.

	Returns

	Affine transform filter object with the specified parameters.

	
forward(x, out_grid=None, xyz_affine=False)

	Resamples the Core.StructuredGrid through the affine attribute onto the same grid or the out_grid if
out_grid is provided.

	Parameters

	
	x (Core.StructuredGrid) – StructuredGrid to be transformed by the affine attribute.

	out_grid (Core.StructuredGrid, optional) – An optional additional grid that specifies the output grid. If not specified, the output grid
will be the same as the input grid (x).

	xyz_affine (bool, optional) – Is affine xyz ordered instead of zyx?

	Returns

	Affine transformed StructredGrid

Apply Grid Filter

	
class ApplyGrid(grid, interp_mode='bilinear', pad_mode='zeros', device='cpu', dtype=torch.float32)

	Bases: camp.StructuredGridOperators.UnaryOperators._UnaryFilter.Filter

	
static Create(grid, interp_mode='bilinear', pad_mode='zeros', device='cpu', dtype=torch.float32)

	Returns an Apply Grid Filter that contained a deformation field that can be applied to type StructuredGrid and adds all attributes to the appropriate memory device.

	Parameters

	
	grid (StructuredGrid) – The deformation field to be applied by the Apply Grid Filter. This is assumed to be in real-world
coordinates relative to the spacing and origin of the grid.

	interp_mode (str) – Resampling interpolation mode to be used when applying the defromation - one of ‘bilinear’
or ‘nearest’. Default: ‘bilinear’

	pad_mode (str) – padding mode for outside grid values - one of ‘zeros’, ‘border’, or ‘reflection’.
Default: ‘zeros’

	device (str) – Memory location for the created Apply Grid Filter - one of ‘cpu’, ‘cuda’, or ‘cuda:X’ where X
specifies the device identifier. Default: ‘cpu’

	dtype (str) – Data type for the Apply Grid Filter attributes. Specified from torch memory types. Default:
‘torch.float32’

Note

When mode=’bilinear’ and the input is 5-D, the interpolation mode used internally will actually be
trilinear. However, when the input is 4-D, the interpolation mode will legitimately be bilinear.

	Returns

	Apply Grid Filter with the specified parameters.

	
forward(in_grid, out_grid=None)

	Apply the grid attribute to in_grid.

	Parameters

	
	in_grid (StructuredGrid) – The :class:’StructuredGrid’ to apply the grid attribute to.

	out_grid (StructuredGrid, optional) – An optional additional grid that specifies the output grid. If not specified, the output grid will be the same as the input grid.

	Returns

	Returns in_grid resampled through the grid attribute onto the out_grid.

Divergence Filter

	
class Divergence(dim=2, device='cpu', dtype=torch.float32)

	
	
static Create(dim=2, device='cpu', dtype=torch.float32)

	Create a object to calculate the divergence of a look-up table field StructuredGrid.

	Parameters

	
	dim (int) – Dimension of the StructuredGrid the filter will be applied to (not including channels).

	device (str) – Memory location for the created filter - one of ‘cpu’, ‘cuda’, or ‘cuda:X’ where X
specifies the device identifier. Default: ‘cpu’

	dtype (str) – Data type for the filter attributes. Specified from torch memory types. Default:
‘torch.float32’

	Returns

	Divergence filter object with the specified parameters.

	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

Fluid Kernel Filter

	
class FluidKernel(grid, alpha=1.0, beta=0.0, gamma=0.001, device='cpu', dtype=torch.float32)

	
	
static Create(grid, alpha=1.0, beta=0.0, gamma=0.001, device='cpu', dtype=torch.float32)

	

	
apply_forward(x)

	

	
apply_inverse(x)

	

	
forward(x, inverse)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
project_incompressible(x)

	

	
set_size(grid)

	

Gaussian Filter

	
class Gaussian(channels, kernel_size, sigma, dim=2, device='cpu', dtype=torch.float32)

	Bases: camp.StructuredGridOperators.UnaryOperators._UnaryFilter.Filter

	
static Create(channels, kernel_size, sigma, dim=2, device='cpu', dtype=torch.float32)

	Create a filter to gaussian blur a StructuredGrid with the specified number of channels.

	Parameters

	
	channels (int) – Number of channels in the StructuredGrid to be blurred.

	kernel_size (int) – Size of the kernel to use.

	sigma (int) – Sigma of the gaussian kernel.

	dim (int) – Number of dimensions in the StructuredGrid the filter will be applied to (not including
channels).

	device (str) – Memory location for the created filter - one of ‘cpu’, ‘cuda’, or ‘cuda:X’ where X
specifies the device identifier. Default: ‘cpu’

	dtype (str) – Data type for the filter attributes. Specified from torch memory types. Default:
‘torch.float32’

	Returns

	Gaussian filter object with the specified parameters.

	
forward(x)

	Apply the gaussian filter to the input StructuredGrid x.

	Parameters

	x (StructuredGrid) – StructuredGrid to apply the gaussian to.

	Returns

	Gaussian filtered StructuredGrid.

Gradient Filter

	
class Gradient(dim=2, device='cpu', dtype=torch.float32)

	Bases: camp.StructuredGridOperators.UnaryOperators._UnaryFilter.Filter

	
static Create(dim=2, device='cpu', dtype=torch.float32)

	Create a filter to calculate the central difference of a StructuredGrid.

	Parameters

	
	dim (int) – Number of dimensions in the StructuredGrid the filter will be applied to (not including
channels).

	device (str) – Memory location for the created filter - one of ‘cpu’, ‘cuda’, or ‘cuda:X’ where X
specifies the device identifier. Default: ‘cpu’

	dtype (str) – Data type for the filter attributes. Specified from torch memory types. Default:
‘torch.float32’

	Returns

	Gaussian filter object with the specified parameters.

	
forward(x)

	Calculate the gradient of the input StructuredGrid x.

	Parameters

	x (StructuredGrid) – StructuredGrid to calculate the gradients of.

	Returns

	Gradients of the input StructuredGrid.

Gradient Regularizer

	
class NormGradient(weight, dim=2, device='cpu', dtype=torch.float32)

	
	
static Create(weight, dim=2, device='cpu', dtype=torch.float32)

	

	
forward(vector_field)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

Jacobian Determinant Filter

	
class JacobianDeterminant(dim=2, device='cpu', dtype=torch.float32)

	
	
static Create(dim=2, device='cpu', dtype=torch.float32)

	Create a filter to calculate the Jacobian determinant of a look-up table StructuredGrid.

	Parameters

	
	dim (int) – Number of dimensions in the StructuredGrid the filter will be applied to (not including
channels).

	device (str) – Memory location for the created filter - one of ‘cpu’, ‘cuda’, or ‘cuda:X’ where X
specifies the device identifier. Default: ‘cpu’

	dtype (str) – Data type for the filter attributes. Specified from torch memory types. Default:
‘torch.float32’

	Returns

	Jacobian determinant filter object.

	
forward(x)

	Calculate the Jacobian determinant of the input StructuredGrid x.

	Parameters

	x (StructuredGrid) – StructuredGrid to calculate the Jacobian determinant of.

	Returns

	Jacobian determinant of the input StructuredGrid.

Radial Basis Filter

Resample World Filter

	
class ResampleWorld(grid, interp_mode='bilinear', pad_mode='zeros', device='cpu', dtype=torch.float32)

	
	
static Create(grid, interp_mode='bilinear', pad_mode='zeros', device='cpu', dtype=torch.float32)

	

	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

Variance Equalize Filter

	
class VarianceEqualize(kernel_size=11, sigma=2.0, eps=0.001, device='cpu', dtype=torch.float32)

	Takes an Image and gives the variance equalized version.

I_out, Im: PyCA Image3Ds
sigma: (scalar) gaussian filter parameter
eps: (scalar) division regularizer

sigma is the width (in voxels) of the gaussian kernel
eps is the regularizer

for a gaussian kernel k, we have

I_ve = I’/sqrt(k * I’^2)
where I’ = I - k*I

	
static Create(kernel_size=11, sigma=2.0, eps=0.001, device='cpu', dtype=torch.float32)

	

	
forward(x)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

Structured Grid Tools

Gradient Flow Filter

	
class IterativeMatch(source, target, similarity, operator, regularization=None, step_size=0.001, incompressible=True, device='cpu', dtype=torch.float32)

	Bases: camp.StructuredGridTools._BaseTool.Filter

	
static Create(source, target, similarity, operator, regularization=None, step_size=0.001, incompressible=True, device='cpu', dtype=torch.float32)

	

	
energy()

	

	
get_field()

	

	
get_image()

	

	
step()

	

Unstructured Grid Operators

	Binary Operators
	Affine Currents

	Currents Energy Filter

	Deformable Currents Filter

	Single Angle Affine Currents Filter

	Stitching Currents Filter

	Unary Operators
	Affine Transform Filter

	Gaussian Smoothing Filter

Binary Operators

Affine Currents

	
class AffineCurrents(tar_normals, tar_centers, sigma, init_affine=None, init_translation=None, kernel='cauchy', device='cpu', dtype=torch.float32)

	Bases: torch.nn.modules.module.Module

	
static Create(tar_normals, tar_centers, sigma, init_affine=None, init_translation=None, kernel='cauchy', device='cpu', dtype=torch.float32)

	

	
forward(src_normals, src_centers)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

Currents Energy Filter

	
class CurrentsEnergy(tar_normals, tar_centers, sigma, kernel='cauchy', device='cpu', dtype=torch.float32)

	Bases: torch.nn.modules.module.Module

	
static Create(tar_normals, tar_centers, sigma, kernel='cauchy', device='cpu', dtype=torch.float32)

	

	
static cauchy(d, sigma)

	

	
static colordiff(src_colors, tar_colors)

	

	
static distance(src_centers, tar_centers)

	

	
forward(src_normals, src_centers, tar_normals, tar_centers)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
static gaussian(d, sigma)

	

Deformable Currents Filter

	
class DeformableCurrents(src_surface, tar_surface, sigma, kernel='cauchy', device='cpu', dtype=torch.float32)

	Bases: torch.nn.modules.module.Module

	
static Create(src_surface, tar_surface, sigma, kernel='cauchy', device='cpu', dtype=torch.float32)

	

	
forward()

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

Single Angle Affine Currents Filter

	
class SingleAngleCurrents(tar_normals, tar_centers, sigma, init_angle=None, init_translation=None, kernel='cauchy', device='cpu', dtype=torch.float32)

	Bases: torch.nn.modules.module.Module

	
static Create(tar_normals, tar_centers, sigma, init_angle=None, init_translation=None, kernel='cauchy', device='cpu', dtype=torch.float32)

	

	
build_matrix()

	

	
forward(src_normals, src_centers)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

Stitching Currents Filter

	
class StitchingCurrents(src_surface, tar_surface, reference_surface, sigma, kernel='cauchy', device='cpu', dtype=torch.float32)

	Bases: torch.nn.modules.module.Module

	
static Create(src_surface, tar_surface, ref_surface, sigma, kernel='cauchy', device='cpu', dtype=torch.float32)

	

	
static cauchy(d, sigma)

	

	
static distance(src_centers, tar_centers)

	

	
energy(src_normals, src_centers, tar_normals, tar_centers)

	

	
forward()

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
static gaussian(d, sigma)

	

Unary Operators

Affine Transform Filter

	
class AffineTransformSurface(affine, rigid=False, device='cpu', dtype=torch.float32)

	Bases: camp.UnstructuredGridOperators.UnaryOperators._UnaryFilter.Filter

	
static Create(affine, rigid=False, device='cpu', dtype=torch.float32)

	

	
forward(obj_in)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

Gaussian Smoothing Filter

	
class GaussianSmoothing(sigma, dim=2, device='cpu', dtype=torch.float32)

	Bases: camp.UnstructuredGridOperators.UnaryOperators._UnaryFilter.Filter

	
static Create(sigma, dim=2, device='cpu', dtype=torch.float32)

	

	
forward(verts)

	Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 camp	

 	
 	
 camp.Core.Display	

 	
 	
 camp.Core.StructuredGridClass	

 	
 	
 camp.Core.TriangleMeshClass	

 	
 	
 camp.FileIO.ITKFileIO	

 	
 	
 camp.FileIO.OBJFileIO	

 	
 	
 camp.StructuredGridOperators.BinaryOperators.AffineIntensityFilter	

 	
 	
 camp.StructuredGridOperators.BinaryOperators.ComposeGridsFilter	

 	
 	
 camp.StructuredGridOperators.BinaryOperators.L2ImageSimilarity	

 	
 	
 camp.StructuredGridOperators.BinaryOperators.NormalizedCrossCorrelationFilter	

 	
 	
 camp.StructuredGridOperators.UnaryOperators.AffineTransformFilter	

 	
 	
 camp.StructuredGridOperators.UnaryOperators.ApplyGridFilter	

 	
 	
 camp.StructuredGridOperators.UnaryOperators.DivergenceFilter	

 	
 	
 camp.StructuredGridOperators.UnaryOperators.FluidKernelFilter	

 	
 	
 camp.StructuredGridOperators.UnaryOperators.GaussianFilter	

 	
 	
 camp.StructuredGridOperators.UnaryOperators.GradientFilter	

 	
 	
 camp.StructuredGridOperators.UnaryOperators.GradientRegularizer	

 	
 	
 camp.StructuredGridOperators.UnaryOperators.JacobianDeterminantFilter	

 	
 	
 camp.StructuredGridOperators.UnaryOperators.ResampleWorldFilter	

 	
 	
 camp.StructuredGridOperators.UnaryOperators.VarianceEqualizeFilter	

 	
 	
 camp.StructuredGridTools.GradientFlowFilter	

 	
 	
 camp.UnstructuredGridOperators.BinaryOperators.AffineCurrentsFilter	

 	
 	
 camp.UnstructuredGridOperators.BinaryOperators.CurrentsEnergyFilter	

 	
 	
 camp.UnstructuredGridOperators.BinaryOperators.DeformableCurrentsFilter	

 	
 	
 camp.UnstructuredGridOperators.BinaryOperators.SingleAngleAffineCurrentsFilter	

 	
 	
 camp.UnstructuredGridOperators.BinaryOperators.StitchingCurrentsFilter	

 	
 	
 camp.UnstructuredGridOperators.UnaryOperators.AffineTransformFilter	

 	
 	
 camp.UnstructuredGridOperators.UnaryOperators.GaussianSmoothingFilter	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | V
 | W

A

 	
 	add_surface_() (TriangleMesh method)

 	AffineCurrents (class in camp.UnstructuredGridOperators.BinaryOperators.AffineCurrentsFilter)

 	AffineIntensity (class in camp.StructuredGridOperators.BinaryOperators.AffineIntensityFilter)

 	AffineTransform (class in camp.StructuredGridOperators.UnaryOperators.AffineTransformFilter)

 	
 	AffineTransformSurface (class in camp.UnstructuredGridOperators.UnaryOperators.AffineTransformFilter)

 	apply_forward() (FluidKernel method)

 	apply_inverse() (FluidKernel method)

 	ApplyGrid (class in camp.StructuredGridOperators.UnaryOperators.ApplyGridFilter)

B

 	
 	build_matrix() (SingleAngleCurrents method)

C

 	
 	c1() (L2Similarity method)

 	(NormalizedCrossCorrelation method)

 	calc_centers() (TriangleMesh method)

 	calc_normals() (TriangleMesh method)

 	
 camp.Core.Display

 	module

 	
 camp.Core.StructuredGridClass

 	module

 	
 camp.Core.TriangleMeshClass

 	module

 	
 camp.FileIO.ITKFileIO

 	module

 	
 camp.FileIO.OBJFileIO

 	module

 	
 camp.StructuredGridOperators.BinaryOperators.AffineIntensityFilter

 	module

 	
 camp.StructuredGridOperators.BinaryOperators.ComposeGridsFilter

 	module

 	
 camp.StructuredGridOperators.BinaryOperators.L2ImageSimilarity

 	module

 	
 camp.StructuredGridOperators.BinaryOperators.NormalizedCrossCorrelationFilter

 	module

 	
 camp.StructuredGridOperators.UnaryOperators.AffineTransformFilter

 	module

 	
 camp.StructuredGridOperators.UnaryOperators.ApplyGridFilter

 	module

 	
 camp.StructuredGridOperators.UnaryOperators.DivergenceFilter

 	module

 	
 camp.StructuredGridOperators.UnaryOperators.FluidKernelFilter

 	module

 	
 camp.StructuredGridOperators.UnaryOperators.GaussianFilter

 	module

 	
 camp.StructuredGridOperators.UnaryOperators.GradientFilter

 	module

 	
 camp.StructuredGridOperators.UnaryOperators.GradientRegularizer

 	module

 	
 camp.StructuredGridOperators.UnaryOperators.JacobianDeterminantFilter

 	module

 	
 camp.StructuredGridOperators.UnaryOperators.ResampleWorldFilter

 	module

 	
 camp.StructuredGridOperators.UnaryOperators.VarianceEqualizeFilter

 	module

 	
 camp.StructuredGridTools.GradientFlowFilter

 	module

 	
 	
 camp.UnstructuredGridOperators.BinaryOperators.AffineCurrentsFilter

 	module

 	
 camp.UnstructuredGridOperators.BinaryOperators.CurrentsEnergyFilter

 	module

 	
 camp.UnstructuredGridOperators.BinaryOperators.DeformableCurrentsFilter

 	module

 	
 camp.UnstructuredGridOperators.BinaryOperators.SingleAngleAffineCurrentsFilter

 	module

 	
 camp.UnstructuredGridOperators.BinaryOperators.StitchingCurrentsFilter

 	module

 	
 camp.UnstructuredGridOperators.UnaryOperators.AffineTransformFilter

 	module

 	
 camp.UnstructuredGridOperators.UnaryOperators.GaussianSmoothingFilter

 	module

 	cauchy() (CurrentsEnergy static method)

 	(StitchingCurrents static method)

 	clone() (StructuredGrid method)

 	colordiff() (CurrentsEnergy static method)

 	ComposeGrids (class in camp.StructuredGridOperators.BinaryOperators.ComposeGridsFilter)

 	copy() (StructuredGrid method)

 	Create() (AffineCurrents static method)

 	(AffineIntensity static method)

 	(AffineTransform static method)

 	(AffineTransformSurface static method)

 	(ApplyGrid static method)

 	(ComposeGrids static method)

 	(CurrentsEnergy static method)

 	(DeformableCurrents static method)

 	(Divergence static method)

 	(FluidKernel static method)

 	(Gaussian static method)

 	(GaussianSmoothing static method)

 	(Gradient static method)

 	(IterativeMatch static method)

 	(JacobianDeterminant static method)

 	(L2Similarity static method)

 	(NormalizedCrossCorrelation static method)

 	(NormGradient static method)

 	(ResampleWorld static method)

 	(SingleAngleCurrents static method)

 	(StitchingCurrents static method)

 	(VarianceEqualize static method)

 	CurrentsEnergy (class in camp.UnstructuredGridOperators.BinaryOperators.CurrentsEnergyFilter)

D

 	
 	DeformableCurrents (class in camp.UnstructuredGridOperators.BinaryOperators.DeformableCurrentsFilter)

 	DispFieldGrid() (in module camp.Core.Display)

 	DispImage() (in module camp.Core.Display)

 	DisplayException

 	
 	DisplayJacobianDeterminant() (in module camp.Core.Display)

 	distance() (CurrentsEnergy static method)

 	(StitchingCurrents static method)

 	Divergence (class in camp.StructuredGridOperators.UnaryOperators.DivergenceFilter)

E

 	
 	energy() (IterativeMatch method)

 	(StitchingCurrents method)

 	
 	EnergyPlot() (in module camp.Core.Display)

 	extract_slice() (StructuredGrid method)

F

 	
 	flip_normals_() (TriangleMesh method)

 	FluidKernel (class in camp.StructuredGridOperators.UnaryOperators.FluidKernelFilter)

 	forward() (AffineCurrents method)

 	(AffineIntensity method)

 	(AffineTransform method)

 	(AffineTransformSurface method)

 	(ApplyGrid method)

 	(ComposeGrids method)

 	(CurrentsEnergy method)

 	(DeformableCurrents method)

 	(Divergence method)

 	(FluidKernel method)

 	(Gaussian method)

 	(GaussianSmoothing method)

 	(Gradient method)

 	(JacobianDeterminant method)

 	(L2Similarity method)

 	(NormalizedCrossCorrelation method)

 	(NormGradient method)

 	(ResampleWorld method)

 	(SingleAngleCurrents method)

 	(StitchingCurrents method)

 	(VarianceEqualize method)

 	
 	FromGrid() (StructuredGrid static method)

G

 	
 	Gaussian (class in camp.StructuredGridOperators.UnaryOperators.GaussianFilter)

 	gaussian() (CurrentsEnergy static method)

 	(StitchingCurrents static method)

 	GaussianSmoothing (class in camp.UnstructuredGridOperators.UnaryOperators.GaussianSmoothingFilter)

 	
 	get_field() (IterativeMatch method)

 	get_image() (IterativeMatch method)

 	get_subvol() (StructuredGrid method)

 	Gradient (class in camp.StructuredGridOperators.UnaryOperators.GradientFilter)

I

 	
 	IterativeMatch (class in camp.StructuredGridTools.GradientFlowFilter)

J

 	
 	JacobianDeterminant (class in camp.StructuredGridOperators.UnaryOperators.JacobianDeterminantFilter)

L

 	
 	L2Similarity (class in camp.StructuredGridOperators.BinaryOperators.L2ImageSimilarity)

 	
 	LoadITKFile() (in module camp.FileIO.ITKFileIO)

M

 	
 	max() (StructuredGrid method)

 	min() (StructuredGrid method)

 	minmax() (StructuredGrid method)

 	
 module

 	camp.Core.Display

 	camp.Core.StructuredGridClass

 	camp.Core.TriangleMeshClass

 	camp.FileIO.ITKFileIO

 	camp.FileIO.OBJFileIO

 	camp.StructuredGridOperators.BinaryOperators.AffineIntensityFilter

 	camp.StructuredGridOperators.BinaryOperators.ComposeGridsFilter

 	camp.StructuredGridOperators.BinaryOperators.L2ImageSimilarity

 	camp.StructuredGridOperators.BinaryOperators.NormalizedCrossCorrelationFilter

 	camp.StructuredGridOperators.UnaryOperators.AffineTransformFilter

 	camp.StructuredGridOperators.UnaryOperators.ApplyGridFilter

 	camp.StructuredGridOperators.UnaryOperators.DivergenceFilter

 	camp.StructuredGridOperators.UnaryOperators.FluidKernelFilter

 	camp.StructuredGridOperators.UnaryOperators.GaussianFilter

 	camp.StructuredGridOperators.UnaryOperators.GradientFilter

 	camp.StructuredGridOperators.UnaryOperators.GradientRegularizer

 	camp.StructuredGridOperators.UnaryOperators.JacobianDeterminantFilter

 	camp.StructuredGridOperators.UnaryOperators.ResampleWorldFilter

 	camp.StructuredGridOperators.UnaryOperators.VarianceEqualizeFilter

 	camp.StructuredGridTools.GradientFlowFilter

 	camp.UnstructuredGridOperators.BinaryOperators.AffineCurrentsFilter

 	camp.UnstructuredGridOperators.BinaryOperators.CurrentsEnergyFilter

 	camp.UnstructuredGridOperators.BinaryOperators.DeformableCurrentsFilter

 	camp.UnstructuredGridOperators.BinaryOperators.SingleAngleAffineCurrentsFilter

 	camp.UnstructuredGridOperators.BinaryOperators.StitchingCurrentsFilter

 	camp.UnstructuredGridOperators.UnaryOperators.AffineTransformFilter

 	camp.UnstructuredGridOperators.UnaryOperators.GaussianSmoothingFilter

N

 	
 	NormalizedCrossCorrelation (class in camp.StructuredGridOperators.BinaryOperators.NormalizedCrossCorrelationFilter)

 	
 	NormGradient (class in camp.StructuredGridOperators.UnaryOperators.GradientRegularizer)

P

 	
 	PlotSurface() (in module camp.Core.Display)

 	
 	project_incompressible() (FluidKernel method)

R

 	
 	ReadOBJ() (in module camp.FileIO.OBJFileIO)

 	
 	ResampleWorld (class in camp.StructuredGridOperators.UnaryOperators.ResampleWorldFilter)

S

 	
 	SaveITKFile() (in module camp.FileIO.ITKFileIO)

 	set_origin_() (StructuredGrid method)

 	set_size() (FluidKernel method)

 	(StructuredGrid method)

 	set_spacing_() (StructuredGrid method)

 	set_to_identity_lut_() (StructuredGrid method)

 	
 	shape() (StructuredGrid method)

 	SingleAngleCurrents (class in camp.UnstructuredGridOperators.BinaryOperators.SingleAngleAffineCurrentsFilter)

 	step() (IterativeMatch method)

 	StitchingCurrents (class in camp.UnstructuredGridOperators.BinaryOperators.StitchingCurrentsFilter)

 	StructuredGrid (class in camp.Core.StructuredGridClass)

 	sum() (StructuredGrid method)

T

 	
 	to_() (StructuredGrid method)

 	
 	to_type_() (StructuredGrid method)

 	TriangleMesh (class in camp.Core.TriangleMeshClass)

V

 	
 	VarianceEqualize (class in camp.StructuredGridOperators.UnaryOperators.VarianceEqualizeFilter)

W

 	
 	WriteOBJ() (in module camp.FileIO.OBJFileIO)

 nav.xhtml

 Table of Contents

 		
 CAMP: Computational Anatomy and Medical Imaging using PyTorch

 		
 Core

 		
 Structured Grid

 		
 Triangle Mesh

 		
 Display

 		
 File Input/Output (IO)

 		
 ITK IO

 		
 Object IO

 		
 Structured Grid Operators

 		
 Binary Operators

 		
 Affine Intensity Filter

 		
 Compose Grids Filter

 		
 L2 Image Similarity

 		
 Normalized Cross Correlation Filter

 		
 Unary Operators

 		
 Affine Transform Filter

 		
 Apply Grid Filter

 		
 Divergence Filter

 		
 Fluid Kernel Filter

 		
 Gaussian Filter

 		
 Gradient Filter

 		
 Gradient Regularizer

 		
 Jacobian Determinant Filter

 		
 Radial Basis Filter

 		
 Resample World Filter

 		
 Variance Equalize Filter

 		
 Structured Grid Tools

 		
 Gradient Flow Filter

 		
 Unstructured Grid Operators

 		
 Binary Operators

 		
 Affine Currents

 		
 Currents Energy Filter

 		
 Deformable Currents Filter

 		
 Single Angle Affine Currents Filter

 		
 Stitching Currents Filter

 		
 Unary Operators

 		
 Affine Transform Filter

 		
 Gaussian Smoothing Filter

_static/plus.png

_static/file.png

_static/minus.png

